Method from java.lang.String Detail: |
public char charAt(int index) {
if ((index < 0) || (index >= count)) {
throw new StringIndexOutOfBoundsException(index);
}
return value[index + offset];
}
Returns the char value at the
specified index. An index ranges from 0 to
length() - 1 . The first char value of the sequence
is at index 0 , the next at index 1 ,
and so on, as for array indexing.
If the char value specified by the index is a
surrogate, the surrogate
value is returned. |
public int codePointAt(int index) {
if ((index < 0) || (index >= count)) {
throw new StringIndexOutOfBoundsException(index);
}
return Character.codePointAtImpl(value, offset + index, offset + count);
}
Returns the character (Unicode code point) at the specified
index. The index refers to char values
(Unicode code units) and ranges from 0 to
#length() - 1 .
If the char value specified at the given index
is in the high-surrogate range, the following index is less
than the length of this String , and the
char value at the following index is in the
low-surrogate range, then the supplementary code point
corresponding to this surrogate pair is returned. Otherwise,
the char value at the given index is returned. |
public int codePointBefore(int index) {
int i = index - 1;
if ((i < 0) || (i >= count)) {
throw new StringIndexOutOfBoundsException(index);
}
return Character.codePointBeforeImpl(value, offset + index, offset);
}
Returns the character (Unicode code point) before the specified
index. The index refers to char values
(Unicode code units) and ranges from 1 to length .
If the char value at (index - 1)
is in the low-surrogate range, (index - 2) is not
negative, and the char value at (index -
2) is in the high-surrogate range, then the
supplementary code point value of the surrogate pair is
returned. If the char value at index -
1 is an unpaired low-surrogate or a high-surrogate, the
surrogate value is returned. |
public int codePointCount(int beginIndex,
int endIndex) {
if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
throw new IndexOutOfBoundsException();
}
return Character.codePointCountImpl(value, offset+beginIndex, endIndex-beginIndex);
}
Returns the number of Unicode code points in the specified text
range of this String . The text range begins at the
specified beginIndex and extends to the
char at index endIndex - 1 . Thus the
length (in char s) of the text range is
endIndex-beginIndex . Unpaired surrogates within
the text range count as one code point each. |
public int compareTo(String anotherString) {
int len1 = count;
int len2 = anotherString.count;
int n = Math.min(len1, len2);
char v1[] = value;
char v2[] = anotherString.value;
int i = offset;
int j = anotherString.offset;
if (i == j) {
int k = i;
int lim = n + i;
while (k < lim) {
char c1 = v1[k];
char c2 = v2[k];
if (c1 != c2) {
return c1 - c2;
}
k++;
}
} else {
while (n-- != 0) {
char c1 = v1[i++];
char c2 = v2[j++];
if (c1 != c2) {
return c1 - c2;
}
}
}
return len1 - len2;
}
Compares two strings lexicographically.
The comparison is based on the Unicode value of each character in
the strings. The character sequence represented by this
String object is compared lexicographically to the
character sequence represented by the argument string. The result is
a negative integer if this String object
lexicographically precedes the argument string. The result is a
positive integer if this String object lexicographically
follows the argument string. The result is zero if the strings
are equal; compareTo returns 0 exactly when
the #equals(Object) method would return true .
This is the definition of lexicographic ordering. If two strings are
different, then either they have different characters at some index
that is a valid index for both strings, or their lengths are different,
or both. If they have different characters at one or more index
positions, let k be the smallest such index; then the string
whose character at position k has the smaller value, as
determined by using the < operator, lexicographically precedes the
other string. In this case, compareTo returns the
difference of the two character values at position k in
the two string -- that is, the value:
this.charAt(k)-anotherString.charAt(k)
If there is no index position at which they differ, then the shorter
string lexicographically precedes the longer string. In this case,
compareTo returns the difference of the lengths of the
strings -- that is, the value:
this.length()-anotherString.length()
|
public int compareToIgnoreCase(String str) {
return CASE_INSENSITIVE_ORDER.compare(this, str);
}
Compares two strings lexicographically, ignoring case
differences. This method returns an integer whose sign is that of
calling compareTo with normalized versions of the strings
where case differences have been eliminated by calling
Character.toLowerCase(Character.toUpperCase(character)) on
each character.
Note that this method does not take locale into account,
and will result in an unsatisfactory ordering for certain locales.
The java.text package provides collators to allow
locale-sensitive ordering. |
public String concat(String str) {
int otherLen = str.length();
if (otherLen == 0) {
return this;
}
char buf[] = new char[count + otherLen];
getChars(0, count, buf, 0);
str.getChars(0, otherLen, buf, count);
return new String(0, count + otherLen, buf);
}
Concatenates the specified string to the end of this string.
If the length of the argument string is 0 , then this
String object is returned. Otherwise, a new
String object is created, representing a character
sequence that is the concatenation of the character sequence
represented by this String object and the character
sequence represented by the argument string.
Examples:
"cares".concat("s") returns "caress"
"to".concat("get").concat("her") returns "together"
|
public boolean contains(CharSequence s) {
return indexOf(s.toString()) > -1;
}
Returns true if and only if this string contains the specified
sequence of char values. |
public boolean contentEquals(StringBuffer sb) {
synchronized(sb) {
return contentEquals((CharSequence)sb);
}
}
Compares this string to the specified {@code StringBuffer}. The result
is {@code true} if and only if this {@code String} represents the same
sequence of characters as the specified {@code StringBuffer}. |
public boolean contentEquals(CharSequence cs) {
if (count != cs.length())
return false;
// Argument is a StringBuffer, StringBuilder
if (cs instanceof AbstractStringBuilder) {
char v1[] = value;
char v2[] = ((AbstractStringBuilder)cs).getValue();
int i = offset;
int j = 0;
int n = count;
while (n-- != 0) {
if (v1[i++] != v2[j++])
return false;
}
return true;
}
// Argument is a String
if (cs.equals(this))
return true;
// Argument is a generic CharSequence
char v1[] = value;
int i = offset;
int j = 0;
int n = count;
while (n-- != 0) {
if (v1[i++] != cs.charAt(j++))
return false;
}
return true;
}
Compares this string to the specified {@code CharSequence}. The result
is {@code true} if and only if this {@code String} represents the same
sequence of char values as the specified sequence. |
public static String copyValueOf(char[] data) {
return copyValueOf(data, 0, data.length);
}
Returns a String that represents the character sequence in the
array specified. |
public static String copyValueOf(char[] data,
int offset,
int count) {
// All public String constructors now copy the data.
return new String(data, offset, count);
}
Returns a String that represents the character sequence in the
array specified. |
public boolean endsWith(String suffix) {
return startsWith(suffix, count - suffix.count);
}
Tests if this string ends with the specified suffix. |
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof String) {
String anotherString = (String)anObject;
int n = count;
if (n == anotherString.count) {
char v1[] = value;
char v2[] = anotherString.value;
int i = offset;
int j = anotherString.offset;
while (n-- != 0) {
if (v1[i++] != v2[j++])
return false;
}
return true;
}
}
return false;
}
Compares this string to the specified object. The result is {@code
true} if and only if the argument is not {@code null} and is a {@code
String} object that represents the same sequence of characters as this
object. |
public boolean equalsIgnoreCase(String anotherString) {
return (this == anotherString) ? true :
(anotherString != null) && (anotherString.count == count) &&
regionMatches(true, 0, anotherString, 0, count);
}
Compares this {@code String} to another {@code String}, ignoring case
considerations. Two strings are considered equal ignoring case if they
are of the same length and corresponding characters in the two strings
are equal ignoring case.
Two characters {@code c1} and {@code c2} are considered the same
ignoring case if at least one of the following is true:
|
public static String format(String format,
Object args) {
return new Formatter().format(format, args).toString();
}
|
public static String format(Locale l,
String format,
Object args) {
return new Formatter(l).format(format, args).toString();
}
Returns a formatted string using the specified locale, format string,
and arguments. |
public byte[] getBytes() {
return StringCoding.encode(value, offset, count);
}
Encodes this {@code String} into a sequence of bytes using the
platform's default charset, storing the result into a new byte array.
The behavior of this method when this string cannot be encoded in
the default charset is unspecified. The java.nio.charset.CharsetEncoder class should be used when more control
over the encoding process is required. |
public byte[] getBytes(String charsetName) throws UnsupportedEncodingException {
if (charsetName == null) throw new NullPointerException();
return StringCoding.encode(charsetName, value, offset, count);
}
Encodes this {@code String} into a sequence of bytes using the named
charset, storing the result into a new byte array.
The behavior of this method when this string cannot be encoded in
the given charset is unspecified. The java.nio.charset.CharsetEncoder class should be used when more control
over the encoding process is required. |
public byte[] getBytes(Charset charset) {
if (charset == null) throw new NullPointerException();
return StringCoding.encode(charset, value, offset, count);
}
Encodes this {@code String} into a sequence of bytes using the given
{@linkplain java.nio.charset.Charset charset}, storing the result into a
new byte array.
This method always replaces malformed-input and unmappable-character
sequences with this charset's default replacement byte array. The
java.nio.charset.CharsetEncoder class should be used when more
control over the encoding process is required. |
public void getBytes(int srcBegin,
int srcEnd,
byte[] dst,
int dstBegin) {
if (srcBegin < 0) {
throw new StringIndexOutOfBoundsException(srcBegin);
}
if (srcEnd > count) {
throw new StringIndexOutOfBoundsException(srcEnd);
}
if (srcBegin > srcEnd) {
throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
}
int j = dstBegin;
int n = offset + srcEnd;
int i = offset + srcBegin;
char[] val = value; /* avoid getfield opcode */
while (i < n) {
dst[j++] = (byte)val[i++];
}
} Deprecated! This - method does not properly convert characters into
bytes. As of JDK 1.1, the preferred way to do this is via the
#getBytes() method, which uses the platform's default charset.
Copies characters from this string into the destination byte array. Each
byte receives the 8 low-order bits of the corresponding character. The
eight high-order bits of each character are not copied and do not
participate in the transfer in any way.
The first character to be copied is at index {@code srcBegin}; the
last character to be copied is at index {@code srcEnd-1}. The total
number of characters to be copied is {@code srcEnd-srcBegin}. The
characters, converted to bytes, are copied into the subarray of {@code
dst} starting at index {@code dstBegin} and ending at index:
dstbegin + (srcEnd-srcBegin) - 1
|
void getChars(char[] dst,
int dstBegin) {
System.arraycopy(value, offset, dst, dstBegin, count);
}
Copy characters from this string into dst starting at dstBegin.
This method doesn't perform any range checking. |
public void getChars(int srcBegin,
int srcEnd,
char[] dst,
int dstBegin) {
if (srcBegin < 0) {
throw new StringIndexOutOfBoundsException(srcBegin);
}
if (srcEnd > count) {
throw new StringIndexOutOfBoundsException(srcEnd);
}
if (srcBegin > srcEnd) {
throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
}
System.arraycopy(value, offset + srcBegin, dst, dstBegin,
srcEnd - srcBegin);
}
Copies characters from this string into the destination character
array.
The first character to be copied is at index srcBegin ;
the last character to be copied is at index srcEnd-1
(thus the total number of characters to be copied is
srcEnd-srcBegin ). The characters are copied into the
subarray of dst starting at index dstBegin
and ending at index:
dstbegin + (srcEnd-srcBegin) - 1
|
public int hashCode() {
int h = hash;
if (h == 0 && count > 0) {
int off = offset;
char val[] = value;
int len = count;
for (int i = 0; i < len; i++) {
h = 31*h + val[off++];
}
hash = h;
}
return h;
}
|
public int indexOf(int ch) {
return indexOf(ch, 0);
}
|
public int indexOf(String str) {
return indexOf(str, 0);
}
|
public int indexOf(int ch,
int fromIndex) {
if (fromIndex < 0) {
fromIndex = 0;
} else if (fromIndex >= count) {
// Note: fromIndex might be near -1 > > >1.
return -1;
}
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
// handle most cases here (ch is a BMP code point or a
// negative value (invalid code point))
final char[] value = this.value;
final int offset = this.offset;
final int max = offset + count;
for (int i = offset + fromIndex; i < max ; i++) {
if (value[i] == ch) {
return i - offset;
}
}
return -1;
} else {
return indexOfSupplementary(ch, fromIndex);
}
}
Returns the index within this string of the first occurrence of the
specified character, starting the search at the specified index.
If a character with value ch occurs in the
character sequence represented by this String
object at an index no smaller than fromIndex , then
the index of the first such occurrence is returned. For values
of ch in the range from 0 to 0xFFFF (inclusive),
this is the smallest value k such that:
(this.charAt(k) == ch) && (k >= fromIndex)
is true. For other values of ch , it is the
smallest value k such that:
(this.codePointAt(k) == ch) && (k >= fromIndex)
is true. In either case, if no such character occurs in this
string at or after position fromIndex , then
-1 is returned.
There is no restriction on the value of fromIndex . If it
is negative, it has the same effect as if it were zero: this entire
string may be searched. If it is greater than the length of this
string, it has the same effect as if it were equal to the length of
this string: -1 is returned.
All indices are specified in char values
(Unicode code units). |
public int indexOf(String str,
int fromIndex) {
return indexOf(value, offset, count,
str.value, str.offset, str.count, fromIndex);
}
Returns the index within this string of the first occurrence of the
specified substring, starting at the specified index.
The returned index is the smallest value k for which:
k >= fromIndex && this.startsWith(str, k)
If no such value of k exists, then {@code -1} is returned. |
static int indexOf(char[] source,
int sourceOffset,
int sourceCount,
char[] target,
int targetOffset,
int targetCount,
int fromIndex) {
if (fromIndex >= sourceCount) {
return (targetCount == 0 ? sourceCount : -1);
}
if (fromIndex < 0) {
fromIndex = 0;
}
if (targetCount == 0) {
return fromIndex;
}
char first = target[targetOffset];
int max = sourceOffset + (sourceCount - targetCount);
for (int i = sourceOffset + fromIndex; i < = max; i++) {
/* Look for first character. */
if (source[i] != first) {
while (++i < = max && source[i] != first);
}
/* Found first character, now look at the rest of v2 */
if (i < = max) {
int j = i + 1;
int end = j + targetCount - 1;
for (int k = targetOffset + 1; j < end && source[j] ==
target[k]; j++, k++);
if (j == end) {
/* Found whole string. */
return i - sourceOffset;
}
}
}
return -1;
}
Code shared by String and StringBuffer to do searches. The
source is the character array being searched, and the target
is the string being searched for. |
public native String intern()
Returns a canonical representation for the string object.
A pool of strings, initially empty, is maintained privately by the
class String .
When the intern method is invoked, if the pool already contains a
string equal to this String object as determined by
the #equals(Object) method, then the string from the pool is
returned. Otherwise, this String object is added to the
pool and a reference to this String object is returned.
It follows that for any two strings s and t ,
s.intern() == t.intern() is true
if and only if s.equals(t) is true .
All literal strings and string-valued constant expressions are
interned. String literals are defined in section 3.10.5 of the
The Java™ Language Specification. |
public boolean isEmpty() {
return count == 0;
}
Returns true if, and only if, #length() is 0. |
public int lastIndexOf(int ch) {
return lastIndexOf(ch, count - 1);
}
|
public int lastIndexOf(String str) {
return lastIndexOf(str, count);
}
|
public int lastIndexOf(int ch,
int fromIndex) {
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
// handle most cases here (ch is a BMP code point or a
// negative value (invalid code point))
final char[] value = this.value;
final int offset = this.offset;
int i = offset + Math.min(fromIndex, count - 1);
for (; i >= offset ; i--) {
if (value[i] == ch) {
return i - offset;
}
}
return -1;
} else {
return lastIndexOfSupplementary(ch, fromIndex);
}
}
Returns the index within this string of the last occurrence of
the specified character, searching backward starting at the
specified index. For values of ch in the range
from 0 to 0xFFFF (inclusive), the index returned is the largest
value k such that:
(this.charAt(k) == ch) && (k <= fromIndex)
is true. For other values of ch , it is the
largest value k such that:
(this.codePointAt(k) == ch) && (k <= fromIndex)
is true. In either case, if no such character occurs in this
string at or before position fromIndex , then
-1 is returned.
All indices are specified in char values
(Unicode code units). |
public int lastIndexOf(String str,
int fromIndex) {
return lastIndexOf(value, offset, count,
str.value, str.offset, str.count, fromIndex);
}
Returns the index within this string of the last occurrence of the
specified substring, searching backward starting at the specified index.
The returned index is the largest value k for which:
k <= fromIndex && this.startsWith(str, k)
If no such value of k exists, then {@code -1} is returned. |
static int lastIndexOf(char[] source,
int sourceOffset,
int sourceCount,
char[] target,
int targetOffset,
int targetCount,
int fromIndex) {
/*
* Check arguments; return immediately where possible. For
* consistency, don't check for null str.
*/
int rightIndex = sourceCount - targetCount;
if (fromIndex < 0) {
return -1;
}
if (fromIndex > rightIndex) {
fromIndex = rightIndex;
}
/* Empty string always matches. */
if (targetCount == 0) {
return fromIndex;
}
int strLastIndex = targetOffset + targetCount - 1;
char strLastChar = target[strLastIndex];
int min = sourceOffset + targetCount - 1;
int i = min + fromIndex;
startSearchForLastChar:
while (true) {
while (i >= min && source[i] != strLastChar) {
i--;
}
if (i < min) {
return -1;
}
int j = i - 1;
int start = j - (targetCount - 1);
int k = strLastIndex - 1;
while (j > start) {
if (source[j--] != target[k--]) {
i--;
continue startSearchForLastChar;
}
}
return start - sourceOffset + 1;
}
}
Code shared by String and StringBuffer to do searches. The
source is the character array being searched, and the target
is the string being searched for. |
public int length() {
return count;
}
Returns the length of this string.
The length is equal to the number of Unicode
code units in the string. |
public boolean matches(String regex) {
return Pattern.matches(regex, this);
}
|
public int offsetByCodePoints(int index,
int codePointOffset) {
if (index < 0 || index > count) {
throw new IndexOutOfBoundsException();
}
return Character.offsetByCodePointsImpl(value, offset, count,
offset+index, codePointOffset) - offset;
}
Returns the index within this String that is
offset from the given index by
codePointOffset code points. Unpaired surrogates
within the text range given by index and
codePointOffset count as one code point each. |
public boolean regionMatches(int toffset,
String other,
int ooffset,
int len) {
char ta[] = value;
int to = offset + toffset;
char pa[] = other.value;
int po = other.offset + ooffset;
// Note: toffset, ooffset, or len might be near -1 > > >1.
if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len)
|| (ooffset > (long)other.count - len)) {
return false;
}
while (len-- > 0) {
if (ta[to++] != pa[po++]) {
return false;
}
}
return true;
}
Tests if two string regions are equal.
A substring of this String object is compared to a substring
of the argument other. The result is true if these substrings
represent identical character sequences. The substring of this
String object to be compared begins at index toffset
and has length len. The substring of other to be compared
begins at index ooffset and has length len. The
result is false if and only if at least one of the following
is true:
- toffset is negative.
- ooffset is negative.
- toffset+len is greater than the length of this
String object.
- ooffset+len is greater than the length of the other
argument.
- There is some nonnegative integer k less than len
such that:
this.charAt(toffset+k) != other.charAt(ooffset+k)
|
public boolean regionMatches(boolean ignoreCase,
int toffset,
String other,
int ooffset,
int len) {
char ta[] = value;
int to = offset + toffset;
char pa[] = other.value;
int po = other.offset + ooffset;
// Note: toffset, ooffset, or len might be near -1 > > >1.
if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) ||
(ooffset > (long)other.count - len)) {
return false;
}
while (len-- > 0) {
char c1 = ta[to++];
char c2 = pa[po++];
if (c1 == c2) {
continue;
}
if (ignoreCase) {
// If characters don't match but case may be ignored,
// try converting both characters to uppercase.
// If the results match, then the comparison scan should
// continue.
char u1 = Character.toUpperCase(c1);
char u2 = Character.toUpperCase(c2);
if (u1 == u2) {
continue;
}
// Unfortunately, conversion to uppercase does not work properly
// for the Georgian alphabet, which has strange rules about case
// conversion. So we need to make one last check before
// exiting.
if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
continue;
}
}
return false;
}
return true;
}
Tests if two string regions are equal.
A substring of this String object is compared to a substring
of the argument other. The result is true if these
substrings represent character sequences that are the same, ignoring
case if and only if ignoreCase is true. The substring of
this String object to be compared begins at index
toffset and has length len. The substring of
other to be compared begins at index ooffset and
has length len. The result is false if and only if
at least one of the following is true:
- toffset is negative.
- ooffset is negative.
- toffset+len is greater than the length of this
String object.
- ooffset+len is greater than the length of the other
argument.
- ignoreCase is false and there is some nonnegative
integer k less than len such that:
this.charAt(toffset+k) != other.charAt(ooffset+k)
- ignoreCase is true and there is some nonnegative
integer k less than len such that:
Character.toLowerCase(this.charAt(toffset+k)) !=
Character.toLowerCase(other.charAt(ooffset+k))
and:
Character.toUpperCase(this.charAt(toffset+k)) !=
Character.toUpperCase(other.charAt(ooffset+k))
|
public String replace(char oldChar,
char newChar) {
if (oldChar != newChar) {
int len = count;
int i = -1;
char[] val = value; /* avoid getfield opcode */
int off = offset; /* avoid getfield opcode */
while (++i < len) {
if (val[off + i] == oldChar) {
break;
}
}
if (i < len) {
char buf[] = new char[len];
for (int j = 0 ; j < i ; j++) {
buf[j] = val[off+j];
}
while (i < len) {
char c = val[off + i];
buf[i] = (c == oldChar) ? newChar : c;
i++;
}
return new String(0, len, buf);
}
}
return this;
}
Returns a new string resulting from replacing all occurrences of
oldChar in this string with newChar .
If the character oldChar does not occur in the
character sequence represented by this String object,
then a reference to this String object is returned.
Otherwise, a new String object is created that
represents a character sequence identical to the character sequence
represented by this String object, except that every
occurrence of oldChar is replaced by an occurrence
of newChar .
Examples:
"mesquite in your cellar".replace('e', 'o')
returns "mosquito in your collar"
"the war of baronets".replace('r', 'y')
returns "the way of bayonets"
"sparring with a purple porpoise".replace('p', 't')
returns "starring with a turtle tortoise"
"JonL".replace('q', 'x') returns "JonL" (no change)
|
public String replace(CharSequence target,
CharSequence replacement) {
return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
}
Replaces each substring of this string that matches the literal target
sequence with the specified literal replacement sequence. The
replacement proceeds from the beginning of the string to the end, for
example, replacing "aa" with "b" in the string "aaa" will result in
"ba" rather than "ab". |
public String replaceAll(String regex,
String replacement) {
return Pattern.compile(regex).matcher(this).replaceAll(replacement);
}
|
public String replaceFirst(String regex,
String replacement) {
return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
}
|
public String[] split(String regex) {
return split(regex, 0);
}
Splits this string around matches of the given regular expression.
This method works as if by invoking the two-argument split method with the given expression and a limit
argument of zero. Trailing empty strings are therefore not included in
the resulting array.
The string "boo:and:foo", for example, yields the following
results with these expressions:
Regex |
Result |
: |
{ "boo", "and", "foo" } |
o |
{ "b", "", ":and:f" } |
|
public String[] split(String regex,
int limit) {
/* fastpath if the regex is a
(1)one-char String and this character is not one of the
RegEx's meta characters ".$|()[{^?*+\\", or
(2)two-char String and the first char is the backslash and
the second is not the ascii digit or ascii letter.
*/
char ch = 0;
if (((regex.count == 1 &&
".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
(regex.length() == 2 &&
regex.charAt(0) == '\\' &&
(((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
((ch-'a')|('z'-ch)) < 0 &&
((ch-'A')|('Z'-ch)) < 0)) &&
(ch < Character.MIN_HIGH_SURROGATE ||
ch > Character.MAX_LOW_SURROGATE))
{
int off = 0;
int next = 0;
boolean limited = limit > 0;
ArrayList< String > list = new ArrayList< >();
while ((next = indexOf(ch, off)) != -1) {
if (!limited || list.size() < limit - 1) {
list.add(substring(off, next));
off = next + 1;
} else { // last one
//assert (list.size() == limit - 1);
list.add(substring(off, count));
off = count;
break;
}
}
// If no match was found, return this
if (off == 0)
return new String[] { this };
// Add remaining segment
if (!limited || list.size() < limit)
list.add(substring(off, count));
// Construct result
int resultSize = list.size();
if (limit == 0)
while (resultSize > 0 && list.get(resultSize-1).length() == 0)
resultSize--;
String[] result = new String[resultSize];
return list.subList(0, resultSize).toArray(result);
}
return Pattern.compile(regex).split(this, limit);
}
Splits this string around matches of the given
regular expression.
The array returned by this method contains each substring of this
string that is terminated by another substring that matches the given
expression or is terminated by the end of the string. The substrings in
the array are in the order in which they occur in this string. If the
expression does not match any part of the input then the resulting array
has just one element, namely this string.
The limit parameter controls the number of times the
pattern is applied and therefore affects the length of the resulting
array. If the limit n is greater than zero then the pattern
will be applied at most n - 1 times, the array's
length will be no greater than n, and the array's last entry
will contain all input beyond the last matched delimiter. If n
is non-positive then the pattern will be applied as many times as
possible and the array can have any length. If n is zero then
the pattern will be applied as many times as possible, the array can
have any length, and trailing empty strings will be discarded.
The string "boo:and:foo", for example, yields the
following results with these parameters:
Regex |
Limit |
Result |
: |
2 |
{ "boo", "and:foo" } |
: |
5 |
{ "boo", "and", "foo" } |
: |
-2 |
{ "boo", "and", "foo" } |
o |
5 |
{ "b", "", ":and:f", "", "" } |
o |
-2 |
{ "b", "", ":and:f", "", "" } |
o |
0 |
{ "b", "", ":and:f" } |
An invocation of this method of the form
str.split(regex, n)
yields the same result as the expression
java.util.regex.Pattern .
compile (regex).split (str, n)
|
public boolean startsWith(String prefix) {
return startsWith(prefix, 0);
}
Tests if this string starts with the specified prefix. |
public boolean startsWith(String prefix,
int toffset) {
char ta[] = value;
int to = offset + toffset;
char pa[] = prefix.value;
int po = prefix.offset;
int pc = prefix.count;
// Note: toffset might be near -1 > > >1.
if ((toffset < 0) || (toffset > count - pc)) {
return false;
}
while (--pc >= 0) {
if (ta[to++] != pa[po++]) {
return false;
}
}
return true;
}
Tests if the substring of this string beginning at the
specified index starts with the specified prefix. |
public CharSequence subSequence(int beginIndex,
int endIndex) {
return this.substring(beginIndex, endIndex);
}
Returns a new character sequence that is a subsequence of this sequence.
An invocation of this method of the form
str.subSequence(begin, end)
behaves in exactly the same way as the invocation
str.substring(begin, end)
This method is defined so that the String class can implement
the CharSequence interface. |
public String substring(int beginIndex) {
return substring(beginIndex, count);
}
|
public String substring(int beginIndex,
int endIndex) {
if (beginIndex < 0) {
throw new StringIndexOutOfBoundsException(beginIndex);
}
if (endIndex > count) {
throw new StringIndexOutOfBoundsException(endIndex);
}
if (beginIndex > endIndex) {
throw new StringIndexOutOfBoundsException(endIndex - beginIndex);
}
return ((beginIndex == 0) && (endIndex == count)) ? this :
new String(offset + beginIndex, endIndex - beginIndex, value);
}
|
public char[] toCharArray() {
char result[] = new char[count];
getChars(0, count, result, 0);
return result;
}
Converts this string to a new character array. |
public String toLowerCase() {
return toLowerCase(Locale.getDefault());
}
Converts all of the characters in this String to lower
case using the rules of the default locale. This is equivalent to calling
toLowerCase(Locale.getDefault()) .
Note: This method is locale sensitive, and may produce unexpected
results if used for strings that are intended to be interpreted locale
independently.
Examples are programming language identifiers, protocol keys, and HTML
tags.
For instance, "TITLE".toLowerCase() in a Turkish locale
returns "t\u005Cu0131tle" , where '\u005Cu0131' is the
LATIN SMALL LETTER DOTLESS I character.
To obtain correct results for locale insensitive strings, use
toLowerCase(Locale.ENGLISH) .
|
public String toLowerCase(Locale locale) {
if (locale == null) {
throw new NullPointerException();
}
int firstUpper;
/* Now check if there are any characters that need to be changed. */
scan: {
for (firstUpper = 0 ; firstUpper < count; ) {
char c = value[offset+firstUpper];
if ((c >= Character.MIN_HIGH_SURROGATE) &&
(c < = Character.MAX_HIGH_SURROGATE)) {
int supplChar = codePointAt(firstUpper);
if (supplChar != Character.toLowerCase(supplChar)) {
break scan;
}
firstUpper += Character.charCount(supplChar);
} else {
if (c != Character.toLowerCase(c)) {
break scan;
}
firstUpper++;
}
}
return this;
}
char[] result = new char[count];
int resultOffset = 0; /* result may grow, so i+resultOffset
* is the write location in result */
/* Just copy the first few lowerCase characters. */
System.arraycopy(value, offset, result, 0, firstUpper);
String lang = locale.getLanguage();
boolean localeDependent =
(lang == "tr" || lang == "az" || lang == "lt");
char[] lowerCharArray;
int lowerChar;
int srcChar;
int srcCount;
for (int i = firstUpper; i < count; i += srcCount) {
srcChar = (int)value[offset+i];
if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
(char)srcChar < = Character.MAX_HIGH_SURROGATE) {
srcChar = codePointAt(i);
srcCount = Character.charCount(srcChar);
} else {
srcCount = 1;
}
if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
} else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
lowerChar = Character.ERROR;
} else {
lowerChar = Character.toLowerCase(srcChar);
}
if ((lowerChar == Character.ERROR) ||
(lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
if (lowerChar == Character.ERROR) {
if (!localeDependent && srcChar == '\u0130') {
lowerCharArray =
ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
} else {
lowerCharArray =
ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
}
} else if (srcCount == 2) {
resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
continue;
} else {
lowerCharArray = Character.toChars(lowerChar);
}
/* Grow result if needed */
int mapLen = lowerCharArray.length;
if (mapLen > srcCount) {
char[] result2 = new char[result.length + mapLen - srcCount];
System.arraycopy(result, 0, result2, 0,
i + resultOffset);
result = result2;
}
for (int x=0; x< mapLen; ++x) {
result[i+resultOffset+x] = lowerCharArray[x];
}
resultOffset += (mapLen - srcCount);
} else {
result[i+resultOffset] = (char)lowerChar;
}
}
return new String(0, count+resultOffset, result);
}
|
public String toString() {
return this;
}
This object (which is already a string!) is itself returned. |
public String toUpperCase() {
return toUpperCase(Locale.getDefault());
}
Converts all of the characters in this String to upper
case using the rules of the default locale. This method is equivalent to
toUpperCase(Locale.getDefault()) .
Note: This method is locale sensitive, and may produce unexpected
results if used for strings that are intended to be interpreted locale
independently.
Examples are programming language identifiers, protocol keys, and HTML
tags.
For instance, "title".toUpperCase() in a Turkish locale
returns "T\u005Cu0130TLE" , where '\u005Cu0130' is the
LATIN CAPITAL LETTER I WITH DOT ABOVE character.
To obtain correct results for locale insensitive strings, use
toUpperCase(Locale.ENGLISH) .
|
public String toUpperCase(Locale locale) {
if (locale == null) {
throw new NullPointerException();
}
int firstLower;
/* Now check if there are any characters that need to be changed. */
scan: {
for (firstLower = 0 ; firstLower < count; ) {
int c = (int)value[offset+firstLower];
int srcCount;
if ((c >= Character.MIN_HIGH_SURROGATE) &&
(c < = Character.MAX_HIGH_SURROGATE)) {
c = codePointAt(firstLower);
srcCount = Character.charCount(c);
} else {
srcCount = 1;
}
int upperCaseChar = Character.toUpperCaseEx(c);
if ((upperCaseChar == Character.ERROR) ||
(c != upperCaseChar)) {
break scan;
}
firstLower += srcCount;
}
return this;
}
char[] result = new char[count]; /* may grow */
int resultOffset = 0; /* result may grow, so i+resultOffset
* is the write location in result */
/* Just copy the first few upperCase characters. */
System.arraycopy(value, offset, result, 0, firstLower);
String lang = locale.getLanguage();
boolean localeDependent =
(lang == "tr" || lang == "az" || lang == "lt");
char[] upperCharArray;
int upperChar;
int srcChar;
int srcCount;
for (int i = firstLower; i < count; i += srcCount) {
srcChar = (int)value[offset+i];
if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
(char)srcChar < = Character.MAX_HIGH_SURROGATE) {
srcChar = codePointAt(i);
srcCount = Character.charCount(srcChar);
} else {
srcCount = 1;
}
if (localeDependent) {
upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
} else {
upperChar = Character.toUpperCaseEx(srcChar);
}
if ((upperChar == Character.ERROR) ||
(upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
if (upperChar == Character.ERROR) {
if (localeDependent) {
upperCharArray =
ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
} else {
upperCharArray = Character.toUpperCaseCharArray(srcChar);
}
} else if (srcCount == 2) {
resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
continue;
} else {
upperCharArray = Character.toChars(upperChar);
}
/* Grow result if needed */
int mapLen = upperCharArray.length;
if (mapLen > srcCount) {
char[] result2 = new char[result.length + mapLen - srcCount];
System.arraycopy(result, 0, result2, 0,
i + resultOffset);
result = result2;
}
for (int x=0; x< mapLen; ++x) {
result[i+resultOffset+x] = upperCharArray[x];
}
resultOffset += (mapLen - srcCount);
} else {
result[i+resultOffset] = (char)upperChar;
}
}
return new String(0, count+resultOffset, result);
}
|
public String trim() {
int len = count;
int st = 0;
int off = offset; /* avoid getfield opcode */
char[] val = value; /* avoid getfield opcode */
while ((st < len) && (val[off + st] < = ' ')) {
st++;
}
while ((st < len) && (val[off + len - 1] < = ' ')) {
len--;
}
return ((st > 0) || (len < count)) ? substring(st, len) : this;
}
Returns a copy of the string, with leading and trailing whitespace
omitted.
If this String object represents an empty character
sequence, or the first and last characters of character sequence
represented by this String object both have codes
greater than '\u0020' (the space character), then a
reference to this String object is returned.
Otherwise, if there is no character with a code greater than
'\u0020' in the string, then a new
String object representing an empty string is created
and returned.
Otherwise, let k be the index of the first character in the
string whose code is greater than '\u0020' , and let
m be the index of the last character in the string whose code
is greater than '\u0020' . A new String
object is created, representing the substring of this string that
begins with the character at index k and ends with the
character at index m-that is, the result of
this.substring(k, m+1) .
This method may be used to trim whitespace (as defined above) from
the beginning and end of a string. |
public static String valueOf(Object obj) {
return (obj == null) ? "null" : obj.toString();
}
Returns the string representation of the Object argument. |
public static String valueOf(char[] data) {
return new String(data);
}
Returns the string representation of the char array
argument. The contents of the character array are copied; subsequent
modification of the character array does not affect the newly
created string. |
public static String valueOf(boolean b) {
return b ? "true" : "false";
}
Returns the string representation of the boolean argument. |
public static String valueOf(char c) {
char data[] = {c};
return new String(0, 1, data);
}
Returns the string representation of the char
argument. |
public static String valueOf(int i) {
return Integer.toString(i);
}
|
public static String valueOf(long l) {
return Long.toString(l);
}
|
public static String valueOf(float f) {
return Float.toString(f);
}
|
public static String valueOf(double d) {
return Double.toString(d);
}
|
public static String valueOf(char[] data,
int offset,
int count) {
return new String(data, offset, count);
}
Returns the string representation of a specific subarray of the
char array argument.
The offset argument is the index of the first
character of the subarray. The count argument
specifies the length of the subarray. The contents of the subarray
are copied; subsequent modification of the character array does not
affect the newly created string. |